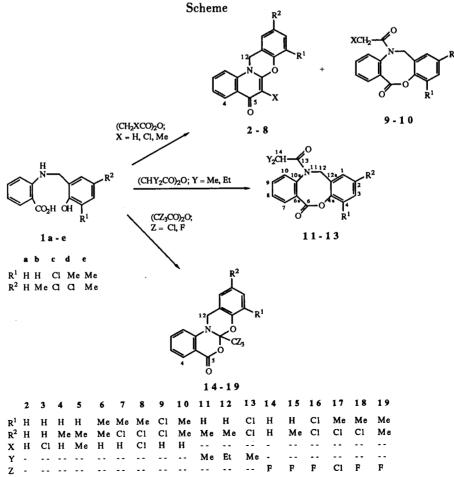
Chemical Behaviour of N-(2-Hydroxybenzyl)anthranilic Acids in the Presence of Acyclic Anhydrides

M. C. Aversa*, P. Bonaccorsi and P. Giannetto

Dipartimento di Chimica organica e biologica, Università di Messina, Messina, Italy Received January 4, 1989


The synthesis of 11-acyl-11,12-dihydrodibenz[b, 11,5] oxazocin-6-ones 9-13 is reported by reaction of N-(2-hydroxybenzyl) anthranilic acids 1 with acetic, isobutyric, 2-ethylbutyric anhydrides. The structures of the obtained 6,8,6 products are proved with the use of ir, mass spectrometry, 'H and '3C nmr spectra, homoand heteronuclear two-dimensional nmr experiments. The formation of 9-13 is discussed in relation to the obtainment of 12H-quino[2,1-b][1,3]benzoxazin-5-ones 2-8 and 6a,12-dihydro[3,1]benzoxazino[2,1-b][1,3]-benzoxazin-5-ones 14-19 from the same starting products 1 with suitable anhydrides under controlled reaction conditions.

J. Heterocyclic Chem., 26, 1383 (1989).

The N-(2-hydroxybenzyl)anthranilic acids 1 [1] were shown to be useful starting products to synthesize fused heteropolycyclic derivatives [2]. Previously we reported the obtainment of the 6,6,6,6 systems 14-19 and 2-8 by reacting Mannich products 1a,b,d,e with suitable acyclic symmetric anhydrides, trifluoroacetic [2a] and acetic, chloroacetic, propionic anhydrides [2b] respectively. Now we recognize the relevance of giving a conclusive comprehensive view on the chemical behaviour of Mannich products

1 in the presence of anhydrides, reporting the following new results, which mainly concern the synthesis of dibenz-[b,f][1,5]oxazocines. Some representative derivatives [3] of this 6,8,6 system - together with their differently fused [b,g] [4] and [c,f] [3a,5] isomers - are reported chiefly in the patent literature, useful as analgesic, antidepressant, anti-inflammatory drugs, hypotensive agents, and sedatives [3a,b,d,4a,c,5a].

When the starting products 1b and 1c were reacted at

130° for 2 hours with an excess of isobutyric or 2-ethylbutyric anhydride $[(CHY_2CO)_2O, Y = Me \text{ or Et, see Scheme}]$, the ll-acyl-11,12-dihydrodibenz[b,f][1,5]oxazocin-6-ones 11-13 were obtained in almost quantitative yields. Also the 11-acetyl-2,4-dichloro-11,12-dihydrodibenz[b,f][1,5]oxazocin-6-one (9) was the only reaction product which we could obtain by treating 1c with acetic anhydride $[(CH_2XCO)_2O, X = H$, see Scheme] but, when the starting product was the N-(3,5-dimethyl-2-hydroxybenzyl)anthranilic acid (1e), the synthesis of the 11-acetylderivative 10 required mild and well controlled reaction conditions, and this 6,8,6 product 10 was obtained always in low yield, together with the 6,6,6,6 derivative 6 (see Experimental).

A tentative rationalization of these experimental results firstly explains the only isolation of benzoxazinobenzoxazinones 14-19 by reaction of 1 with trichloro- and trifluoroacetic anhydrides [(CZ₃CO)₂O, Z = Cl or F, see Scheme] on the basis of high electrophilic properties of the carbonyl carbon atom of NCOCCl₃ or NCOCF₃ moiety of the openchain acyl derivative of 1, which easily undergoes cyclization to 1,3-benzoxazine system, followed by the for-

mation of the fused 3,1-benzoxazinone ring [2a]. Failing these marked electrophilic properties, as occurs in the reactions of 1 with anhydrides as isobutyric or 2-ethylbutyric, the intramolecular esterification to 6,8,6 systems 11-13 appears to be the preferred reaction course. Only (CH₂XCO)₂O - as acetic, chloroacetic, propionic anhydrides - can afford the quinobenzoxazinones 2-8 [2b] in the reaction under study; the minor electrophilic properties of the acyl carbon atom, which would not favour the oxazine ring formation, appears counterbalanced by the obtainment of the fused 4-quinolone system, highly stabilized by mesomerism [2b]. So the 6,6,6,6 systems 2-8 are formed when the compounds la,b,d,e react with an excess of (CH₂XCO)₂O at 140-170° for 2 hours, and only milder reaction conditions enable N-COCH₂X substituted 6,8,6 products to be isolated in low yields, together with 2-8. In the reaction of N-(3,5-dichloro-2-hydroxybenzyl)anthranilic acid (1c) with acetic anhydride, the only formation of the 6,8,6 product 9 can be ascribed to the favourable influence of the halogeno-substitution to the intramolecular esterification, owing to the chlorine effect onto the reactivity of phenolic oxygen atom.

Table I

H NMR Spectroscopic Data of the 11-Acyl-11,12-dihydrodibenz[b,f][1,5]oxazocin-6-ones 9-13 (8, ppm; J, Hz)

	1 1 CDCl ₃ /500 MHz	13 (CD ₃) ₂ SO/500 MHz	CDCl ₃ /60 MHz	9 CDCl ₃ /60 MHz	10 CDCl ₃ /60 MHz	12 (CD ₃) ₂ SO/200 MHz	CDCl ₃ /60 MHz
-CH <i>Me</i> ₂	0.98, d 1.03, d J _{vic} 6.5	0.91, d 1.00, d J _{vic} 6.5	1.04, đ J _{vic} 6.5				
Ar Me	2.16, s				2.14, br s	2.16, s	2.17, s
-CHMe ₂	2.20, m	2.11, m	2.23, m				
2 x -CH ₂ Me						0.67, t 0.77, t J _{vic} 6.5	0.7-2.2, m -CHEt ₂
$-CH(CH_2)_2$						1.2-1.8, m	
-COMe				1.81, s	1.80, s		
H ₂ -12	4.27, d 5.46, d J _{gem} -13.8	4.51, d 5.40, d J _{gem} -15.0	4.27, d 5.44, d J _{gem} -14.0	4.30, d 5.45, d J _{gem} -14.0	4.23, d 5.34, d J _{gem} -14.0	4.42, d 5.33, d J _{gem} -15.0	4.29, d 5.37, d J _{gem} -14.5
H-1	6.84, d J _{1,3} 1.5	7.48, d J _{1,3} 2.0	6.9-7.6, m	6.9-7.5, m	6.5-7.4, m	7.0-7.6, m	6.8-7.4, m ArH
H-3	6.92, dd J _{3,4} 8.1	7.71, d					
H-4	6.86 d						
Н-7	7.34, dd J _{7,8} 7.5 J _{7,9} 1.5	7.58, dd J _{7,8} 8.0 J _{7,9} 1.5					
H-8	7.28, dt J _{8,9} 7.5 J _{8,10} 0.8	7.52, dt $J_{8,9}$ 8.0 $J_{8,10}$ 0.5					
H-9	7.36, dt J _{9,10} 8.0	7.65, dt J _{9,10} 8.0					
H-10	7.03, dd	7.46, dd					

The structure of the compounds 9-13 was elucidated by ir, mass spectrometry, nmr (Tables I and II) spectral work, mainly by performing homo- and heteronuclear two-dimensional nmr experiments of the 11,12-dihydro-11-isobutanoyl-2-methyldibenz[b,f][1,5]oxazocin-6-one (11) in deuteriochloroform solution at 500 and 126 MHz for proton and carbon resonances respectively. The attribution of the high field resonances in the 'H nmr spectrum of 11 is straightforward, but its aromatic portion deserves special comments. An accurate consideration of vicinal and longrange couplings allows the identification of H-1, H-3, and H-4 resonances at 6.84, 6.92, and 6.86 ppm respectively, owing to their multiplicities and $J_{para} < J_{meta}$. For the four protons of the other benzene ring, the sequence of multiplicity is d (7.03), t (7.28), d (7.34), and t (7.36 ppm) with all these lines further split by long-range couplings: noteworthy the ¹H-homonuclear correlation (COSY) spectrum [6a] of 11 shows an important interaction between 7.03 doublet and 7.36 triplet so the attribution of only one absorption allows to immediately assign the remaining three aromatic resonances. We suggest the reported attributions (Table I) on the basis of $J_{7,9} > J_{8,10}$, as verified in the related quinobenzoxazines 2-8 [2b]. Moreover the COSY experiment of 11 shows a slight interaction between 2-Me and the hydrogens of the same benzene ring, thus confirming the above attributions. The assignment of 13 C nmr spectrum of 11 relies upon evaluation of information from the two-dimensional 1 H- 13 C shift correlation experiment [6b], a part from the quaternary carbons, whose attribution is suggested taking as model compounds methyl anthranilate [7], 6a,12-dihydro[3,1]benzoxazino[2,1-b][1,3]benzoxazin-5-ones [2a], and 12H-quino[2,1-b][1,3]benzoxazin-5-ones [2b]. All the other attributions reported in Tables I and II arise by analogy from the aforesaid considerations.

The aromatic ¹H nmr patterns of quinobenzoxazinones **2-8** and benzoxazinobenzoxazinones **14-19** are extended towards low fields (6.7-8.5 and 6.5-8.2 ppm respectively) and the most deshielded multiplet was attributed to H-4

Table II

13C Chemical Shift Data (δ, ppm) for the 11-Acyl-11,12-dihydrodibenz[b,f][1,5]oxazocin-6-ones 11-13

	1 1 CDCl ₃ /126 MHz	1 2 (CD ₃) ₂ SO/50 MHz	13 (CD ₃) ₂ SO/126 MHz
C-1	131.53	131.57	129.91
C-2	136.73	136.29	132.90
C-3	130.24	130.23	130.15
C-4	121.85	121.92	130.72
C-4a	149.68	149.20	145.96
C-6	168.37	167.83	166.64
C-6a	128.02	128.14	127.63
C-7	127.87	127.96	126.92
C-8	129.17	129.42	129.33
C-9	132.17	132.53	133.74
C-10	128.45	129.42	129.33
C-10a	136.88	136.29	133.74
C-12	50.20	49.27	48.94
C-12a	132.58	131.97	131.30
C-13	177.31	174.41	175.73
C-14	32.40	45.66	31.70
Ar Me	20.61	20.10	
-CH <i>Me</i> ₂	19.63 19.65		19.19 19.42
-CH(CH ₂) ₂		24.21 24.61	
2 x -CH ₂ Me		11.47 11.70	

[2b]. Instead the corresponding aromatic resonances of the dibenzoxazocinones 9-13 are concentrated in the range 6.5-7.7 ppm, because the boat conformation of the eightmembered ring prevents the aromatic proton near the endocyclic carbonyl group (H-7 in 9-13, H-4 in 2-8 and 14-19) from being severely deshielded, as it is in the tetracyclic compounds 2-8 and 14-19.

The ir data concerning the stretching of carbonyl groups are in line with the structures of the acyldibenzoxazocinones 9-13. The ester carbonyl frequency is raised on going from 10-12 (1755-1760 cm⁻¹) to the 2,4-dichlorodibenzoxazocinones 9 and 13 (1780-1787 cm⁻¹): this behaviour is imputable to the electron withdrawing halogen substituents which reduce the tendency for the carbonyl oxygen to draw electrons from the other oxygen and thus weaken the C=O bond. As regards the amide C=O stretching, the carbonyl frequency weakly raises changing from isobutanoyl and 2-ethylbutanoyl derivatives 11-13 (1660-1665 cm⁻¹) to the acetylderivatives 9,10 (1675-1677 cm⁻¹), in accordance with the order of the inductive effect of alkyl groups.

The wide effectiveness of the reported synthetic route [2a] to 6a,12-dihydro[3,1]benzoxazino[2,1-b][1,3]benzoxazin-5-ones is strengthened by the obtainment of the new tetracyclic derivatives **16** and **17**. Noteworthy the H₂-12 nmr absorption - which appears as broad singlet in the range 4.67-4.53 ppm for the 6a-trifluoromethyl derivatives **14-16,18,19** - is resolved in a typical AB quartet (δ_A 4.84, δ_B 4.60 ppm; $J_{AB} = -14.0$ Hz) for the 10-chloro-6a,12-dihydro-8-methyl-6a-trichloromethyl[3,1]benzoxazino[2,1-b]-[1,3]benzoxazin-5-one (**17**).

EXPERIMENTAL

Elemental analyses were performed on a Carlo Erba Model 1106 instrument. All melting points are uncorrected. The ir spectra were run on a Perkin-Elmer 682 instrument. The nmr spectra were recorded on Bruker AM-500, 200, or Varian EM-360A instruments as solutions in hexadeuterioacetone, DMSO-d₆, or deuteriochloroform, and using TMS as the internal standard. Mass spectra were obtained on a Varian MAT CH7 (70 eV) spectrometer. Column chromatography was performed on Merck silica gel type 60 (70-230 mesh, 0.063-0.200 mm). Petroleum ether refers to the fraction bp 30-60°. The syntheses and characterizations of compounds 1a,b,d,e and 2-8,14,15,18,19 are reported in [1] and [2] respectively.

N-(3,5-Dichloro-2-hydroxybenzyl)anthranilic Acid (1c).

It was obtained from 2,4-dichlorophenol, anthranilic acid, and paraformaldehyde following the general procedure reported in [1]. During the purification of the crude reaction mixture by column chromatography (petroleum ether-diethyl ether 7:3 v/v as eluent) some fractions were obtained which showed characteristic ¹H nmr absorptions, in hexadeuterioacetone at 60 MHz, of 1c (singlet at 4.44 ppm) and its precursor [1] 1-(3',5'-dichloro-2'-hydroxybenzyl)-1,2-dihydro-3,1-benzoxazin-4-one (two singlets at 4.65 and 5.26 ppm) in variable mutual ratios. All these fractions

were combined, and subjected to completion of benzoxazinone hydrolysis by treatment with an excess (almost 10:1 molar ratio) of 2.5 N aqueous sodium hydroxide at 60° for 30 minutes. The solution was then neutralized with 10% hydrochloric acid, and white crystals of 1c separated (65% yield), mp 148-150°; ¹H nmr (hexadeuterioacetone): 60 MHz, δ 4.44 (s, 2H, CH₂), 6.3-8.0 (m, 6H, ArH).

Anal. Calcd. for $C_{14}H_{11}Cl_2NO_3$: C, 53.87; H, 3.55; N, 4.49. Found: C, 53.81; H, 3.50; N, 4.52.

11-Acetyl-2,4-dichloro-11,12-dihydrodibenz[b, $\int [1,5]$ oxazocin-6-one (9).

The starting product 1c (5 mmoles) was suspended in anhydrous benzene (20 ml), acetic anhydride (12.5 mmoles) was added, and the reaction mixture warmed at reflux for 4 hours. After cooling at room temperature, water (10 ml) was added, and the mixture neutralized by solid sodium bicarbonate. The organic phase was dried (anhydrous sodium sulfate), and the residue, after having removed the solvent, was column chromatographed eluting with petroleum ether-chloroform (1:1 v/v) to give the title product 9 (50% yield), mp 144-146°; ir (nujol): 1787 (ester C=0), 1677 (amide C=0) cm⁻¹.

Anal. Calcd. for $C_{16}H_{11}Cl_2NO_3$: C, 57.17; H, 3.30; N, 14.17. Found: C, 57.11; H, 3.40; N, 4.09.

11-Acetyl-11,12-dihydro-2,4-dimethyldibenz[b,f][1,5]oxazocin-6-one (10).

The starting product 1e [1] (1.85 mmoles) was suspended in anhydrous benzene (20 ml), acetic anhydride (4.6 mmoles) was added, and the reaction mixture kept at room temperature under stirring: 1e was slowly dissolved. After 24 hours, water (10 ml) was added, and the mixture neutralized by solid sodium bicarbonate. The organic phase was dried, evaporated under vacuum, and the residue was column chromatographed eluting with petroleum ether-chloroform (1:1 v/v). This chromatographic separation afforded, besides the title compound 10, comparable amounts of unreacted 1e, and 8,10-dimethyl-12H-quino[2,1-b][1,3]benzoxazin-5-one (6) [2b]. The title compound 10 was further purified by preparative tlc on Merck silica gel 60 PF₂₅₄ plates (2 mm thickness) using chloroform as eluent (18% yield), mp 174-176°; ir (chloroform): 1760 (ester C=0), 1675 (amide C=0) cm⁻¹.

Anal. Caled. for C₁₈H₁₇NO₃: C, 73.20; H, 5.80; N, 4.74. Found: C, 73.21; H, 5.91; N, 4.73.

11,12-Dihydro-11-isobutanoyl-2-methyldibenz $[b\sqrt{1}]$ 1,5]oxazocin-6-one (11).

The Mannich product 1b [1] (5 mmoles) was dissolved by warming in isobutyric anhydride (50 mmoles), and the mixture was stirred at 130° for 2 hours. Small amounts of 11, separated by cooling, were collected by filtration, but the most 11 was obtained by column chromatography of the crude reaction mixture: the unreacted anhydride was eluted with petroleum ether-diethyl ether (8:2 v/v) while the title compound 11 was obtained (total yield >90%) with an 1:1 v/v eluent mixture of the same solvents, mp 215-217°; ir (nujol): 1760 (ester C=0) and 1660 (amide C=0) cm⁻¹; ms: m/z (% relative intensity) 309 (47, M⁺), 266 (73), 189 (37), 146 (32), 120 (30), 119 (100), 90 (43), 89 (27), 43 (36).

Anal. Calcd. for C₁₉H₁₉NO₃: C, 73.77; H, 6.19; N, 4.53. Found: C, 73.71; H, 6.21; N, 4.59.

11,12-Dihydro-11(2'-ethylbutanoyl)-2-methyldibenz[b,f[1,5]oxazo-cin-6-one (12).

It was obtained (yield >90%) from 1b [1] and 2-ethylbutyric anhydride (following the above-mentioned procedure of synthesis and isolation of 11), mp 159-161°; ir (nujol): 1755 (ester C = O), 1665 (amide C = O) cm⁻¹.

Anal. Calcd. for C₂₁H₂₈NO₃: C, 74.75; H, 6.87; N, 4.15. Found: C. 74.49: H. 6.91; N. 4.14.

2,4-Dichloro-11,12-dihydro-11-isobutanoyldibenz[bf][1,5]-oxazocin-6-one (13).

It was prepared from 1c as above reported for 11. The total yield in the title compound 13 exceeds 85%, mp $206-208^\circ$; ir (nujol): 1780 (ester C=0), 1660 (amide C=0) cm⁻¹.

Anal. Calcd. for C₁₈H₁₈Cl₂NO₃: C, 59.36; H, 4.15; N, 3.85. Found: C, 59.41; H, 4.09; N, 3.84.

8,10-Dichloro-6a,12-dihydro-6a-trifluoromethyl[3,1]benzoxazino[2,1-b][1,3]benzoxazin-5-one (16).

It was prepared (80% yield) by reaction of 1c with trifluoroacetic anhydride according to [2a], mp 197-199°; ¹H nmr (deuteriochloroform): 60 MHz, δ 4.67 (br s, 2H, CH₂), 6.9-8.2 (m, 6H, ArH); ir (nujol): 1768 (C = O) cm⁻¹; ms: m/z (% relative intensity) 389 (20, M*), 322 (3), 320 (5), 178 (20), 177 (7), 176 (100), 175 (12), 174 (75), 148 (25), 146 (57), 139 (12).

Anal. Calcd. for C₁₆H₈Cl₂F₅NO₅: C, 49.26; H, 2.07; N, 3.59. Found: C, 49.19; H, 2.11; N, 3.61.

10-Chloro-6a,12-dihydro-8-methyl-6a-trichloromethyl[3,1]benzoxazino[2,1-b][1,3]benzoxazin-5-one (17).

It was obtained (85% yield) by reacting 1d with an excess of trichloroacetic anhydride in analogy with the general procedure reported in [2a], mp 164-165°; ¹H nmr (deuteriochloroform): 60 MHz, δ 2.33 (s, 3H, CH₃), 4.60 and 4.84 (AB q, 2H, J_{gem} = -14.0 Hz, CH₂), 6.8-8.0 (m, 6H, ArH); ir (nujol): 1760 (C = 0) cm⁻¹; ms: m/z (% relative intensity) 417 (2, M*), 386 (3), 385 (2), 384 (5), 383 (3), 382 (5), 340 (5), 339 (2), 338 (5), 336 (2), 334 (3), 314 (4), 305 (5), 304 (9), 303 (20), 302 (60), 301 (12), 300 (100), 265 (10), 228 (11), 202 (11), 200 (12), 156 (40), 155 (25), 154 (60), 146 (70), 126 (40).

Anal. Calcd. for C₁₇H₁₁Cl₄NO₅: C, 48.72; H, 2.64; N, 3.34. Found: C, 48.59; H, 2.80; N, 3.29.

REFERENCES AND NOTES

M. C. Aversa and P. Giannetto, J. Chem. Res. (S), 200 (1984).
 M. C. Aversa, P. Giannetto and G. Bruno, J. Heterocyclic Chem.,
 25, 297 (1988); [b] M. C. Aversa, P. Bonaccorsi and P. Giannetto, ibid.,
 26, 237 (1989).

[3a] H. L. Yale and J. Bernstein, U. S. Patent 3,723,463 (1973); Chem. Abstr., 79, 42582c (1973); [b] Ferrer Internacional S.A., Spanish Patent 431,414 (1977); Chem. Abstr., 87, 68443y (1977); [c] Arakawa-Chotaro and Co., Japan Kokai Tokkyo Koho JP 59,128,379 (1984), Chem. Abstr., 102, 24652q (1985); [d] Arakawa-Chotaro and Co., Japan Kokai Tokkyo Koho JP 59,148,768 (1984); Chem. Abstr., 102, 45986s (1985); S. Arakawa, S. Ogawa, E. Arakawa, K. Miyazaki and A. Murofushi, Japan Kokai Tokkyo Koho JP 6,183,172 (1986); Chem. Abstr., 105, 208950d (1986); Japan Kokai Tokkyo Koho JP 6183,171 (1986); Chem. Abstr., 105, 208951e (1986).

[4a] S. Tanaka and K. Hashimoto, German Offen. 2,044,508 (1971); Chem. Abstr., 75, 36173w (1971); Japan Kokai Tokkyo Koho JP 7141,552 (1971), Chem. Abstr., 76, 59680u (1972); Japan Kokai Tokkyo Koho JP 7311,108 (1973); Chem. Abstr., 79, 53341z (1973); [b] S. Tanaka and Y. Ogata, Yakugaku Zasshi, 93, 1003 (1973); Chem. Abstr., 79, 105218m (1973); S. Tanaka and K. Hashimoto, Yakugaku Zasshi, 93, 982 (1973); Chem. Abstr., 79, 105225m (1973); S. Tanaka, K. Hashimoto, H. Watanabe and K. Sakaguchi, Chem. Pharm. Bull., 21, 1683 (1973); [c] T. Ohgoh, S. Tanaka, M. Fujimoto and A. Kitahara, Yakugaku Zasshi, 97, 24 (1977); Chem. Abstr., 86, 133360q (1977); [d] R. P. Gellatly, W. D. Ollis and I. O. Sutherland, J. Chem. Soc., Perkin Trans. I, 913 (1976); F. Lieb and K. Eiter, Ann. Chem., 203 (1976); J. K. Landquist, "Comprehensive Organic Chemistry", Vol 4, D. Barton and W. D. Ollis, eds, Pergamon Press, Oxford, 1979, pp 1168-1169.

[5a] H. L. Yale, F. A. Sowinski and J. Bernstein, U.S. Patent 3,591,604 (1971); Chem. Abstr., 75, 76855b (1971); [b] G. Ege, E. Beisiegel and P. Arnold, Chem. Ber., 105, 2898 (1972); H. L. Yale and J. Bernstein, French Demande 2,128,097 (1972); Chem. Abstr., 78, 97735q (1973); C. H. Gaozza, An. Ouim., Ser. C, 81, 183 (1985).

[6a] M. D. Bruch, "NMR Spectroscopy Techniques", C. Dybowski and R. L. Lichter, eds, Marcel Dekker, Inc., New York and Basel, 1987, p 135; [b] p 145.

[7] L. F. Johnson and W. C. Jankowski, "Carbon-13 NMR Spectra", Wiley-Interscience, New York, 1972, Spectrum No. 296.